Dale, J. A., Dull, D. L. \& Mosher, H. S. (1969). J. Org. Chem. 34, 2543-2549.
Dale, J. A. \& Mosher, H. S. (1973). J. Am. Chem. Soc. 95, 512-519.
Dunitz, J. (1979). X-ray Analysis and The Structure of Organic Molecules, p. 429. Ithaca: Cornell University Press.
Eberle, M., Egli, M. \& Seebach, D. (1988). Helv. Chim. Acta, 71, 1-23.
Elliott, M. \& Janes, N. F. (1978). Chem. Soc. Rev. 7, 473-505.
Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Krief, A., Surleraux, D. \& Ropson, N. (1993). Tetrahedron Asymmetry, 4, 289-292.
Ollevier, T. (1997). PhD thesis, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Shoffers, E., Golebiowski, A. \& Johnson, C. R. (1996). Tetrahedron. 52, 3769-3826.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Swinnen, D. (I997). Unpublished results.

Acta Cryst. (1998). C54, 398-399

The First Structural Characterization of a Sulfoximidium Salt

John J. Longridge, Jeremy M. Rawson, Neil. Feeder
and Paul R. Raithby
Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England. E-mail: jjl22@cus.cam.ac.uk

(Received 22 August 1997; accepted 12 November 1997)

Abstract

The title compound, diphenylsulfoximidium hydrogen sulfate, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NOS}^{+} . \mathrm{HSO}_{4}^{-}$, was formed as a hydrolysis product during recrystallization of the product of the reaction of $\mathrm{Ph}_{2} \mathrm{SO}$ with $(\mathrm{NSCl})_{3}$. Hydrogen-bonded networks link the cation and anion, the latter forming a hydrogen-bonded dimer.

Comment

It has been previously reported (Becke-Goehring \& Latscha, 1962) that reaction of $\mathrm{Me}_{2} \mathrm{SO}$ with $(\mathrm{NSCl})_{3}$ yielded the compound $\left[\mathrm{Me}_{2} \mathrm{SNSMe}_{2}\right][\mathrm{Cl}]$. We have been interested in exploring this synthetic methodology to prepare new derivatives, including $\left[\mathrm{Ph}_{2} \mathrm{SNSPh}_{2}\right][\mathrm{Cl}]$, which has been prepared previously by alternative routes (Furukawa et al., 1973). In the course of our work investigating the reactivity of $\mathrm{Ph}_{2} \mathrm{SO}$ with $(\mathrm{NSCl})_{3}$, we crys-
tallized the title compound, (I), as a hydrolysis product. Hydrolysis probably occurs in the recrystallization for which the acetone solvent was not dried.

(1)

In (I), the cation is composed of a pseudo-tetrahedral S atom bonded to two phenyl groups, an amine group and an O atom (Fig. 1). The hydrogen sulfate counterion exhibits some disorder which has been modelled over three sites with site occupancies in the approximate ratio 0.74:0.17:0.09. Cations and anions are linked together through an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network [$\mathrm{N} \cdots \mathrm{O} 2.824$ (5) Å]. Hydrogen bonding also leads to the hydrogen sulfate anions forming dimers, with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.596 (8) \AA. In addition, there is a close contact between an ortho-phenyl- H atom and a neighbouring O atom of a hydrogen sulfate anion [O5 . . C12 3.318 (5) Å].

Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme and 50% probability displacement ellipsoids. Only the major component of the hydrogen sulfate disorder is shown for clarity.

Experimental

The synthesis of (I) was carried out by reaction of $\mathrm{Ph}_{2} \mathrm{SO}$ and $(\mathrm{NSCl})_{3}$ in a $6: 1$ molar ratio in CCl_{4}. The solution was refluxed for 18 h and then cooled to room temperature. CCl_{4} was removed in vacuo and the residue dissolved in acetone. Crystals suitable for X-ray diffraction formed over the course of 3-4 d.

Crystal data

$\begin{array}{ll}\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NOS}^{+} . \mathrm{HSO}_{4}^{-} & \text {Mo } K \alpha \text { radiation } \\ M_{r}=315.35 & \lambda=0.71069 \AA\end{array}$

Triclinic
$P \overline{1}$
$a=8.900(2) \AA$
$b=11.508$ (2) \AA
$c=7.7675(10) \AA$
$\alpha=94.713(14)^{\circ}$
$\beta=107.873(13)^{\circ}$
$\gamma=67.784(14)^{\circ}$
$V=700.4(2) \AA^{3}$
$Z=2$
$D_{x}=1.495 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-7R diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
6290 measured reflections
3203 independent reflections 2489 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.099$
$S=1.026$
3200 reflections
227 parameters
H atoms treated by a mixture of independent and constrained refinement

Cell parameters from 25 reflections
$\theta=30-40^{\circ}$
$\mu=0.398 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.51^{\circ}$
$h=-10 \rightarrow 11$
$k=-14 \rightarrow 14$
$l=-10 \rightarrow 9$
3 standard reflections every 200 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0466 P)^{2}\right. \\
& +0.1658 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.004 \\
& \Delta \rho_{\max }=0.267 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.292 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: none } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

S1—O1	$1.436(2)$	$\mathrm{S} 1-\mathrm{C} 11$	$1.756(2)$
$\mathrm{S} 1-\mathrm{N} 2$	$1.564(2)$	$\mathrm{S} 1-\mathrm{C} 21$	$1.761(2)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 2$	$120.21(11)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 21$	$110.17(10)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 11$	$109.07(9)$	$\mathrm{N} 2-\mathrm{S} 1-\mathrm{C} 21$	$102.92(10)$
$\mathrm{N} 2-\mathrm{S} 1-\mathrm{Cl1}$	$103.61(10)$	$\mathrm{C} 11-\mathrm{S} 1-\mathrm{C} 21$	$110.44(9)$

The hydrogen sulfate anion was found to be disordered. Three sets of O atoms were refined with equivalent displacement parameters and idealized tetrahedral geometries. Aromatic H atoms were constrained with a riding model $\left[U_{\mathrm{H}}=1.2 U_{\text {iso }}(\mathrm{C})\right]$. Both $\mathrm{N}-\mathrm{H}$ and hydrogen sulfate H atoms (major component only) were located in a difference map and their coordinates refined with a fixed displacement parameter $\left[U_{\mathrm{H}}=1.2 U_{\text {iso }}(\mathrm{N})\right.$ and $U_{\mathrm{H}}=0.08 \times 10^{3} \mathrm{~A}^{2}$, respectively].

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSCIAFC Diffractometer Control Software. Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP (Siemens, 1994). Software used to prepare material for publication: SHELXL93.

The authors would like to thank the University of Cambridge, the EPSRC and the Newton Trust (studentship to JJL) for support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1214). Services for accessing these data are described at the back of the journal.

References

Becke-Goehring, M. \& Latscha, H. A. (1962). Angew. Chem. Int. Ed. Engl. 1, 551-551.
Furukawa, N., Yoshimura, T. \& Oae, S. (1973). Tetrahedron Lett. 23, 2113-2116.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Sofiware. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994). XP. Interactive Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 399-401

Rotundifoline, an Oxoindole Alkaloid

Ashish Mukhopadhyyay, ${ }^{a}$ Samar Kumar Talapatra, ${ }^{a}$ Ashin Kumar Saha, ${ }^{b}$ Pranab Kumar Lala, ${ }^{b}$ Sunil Kumar Mazumdar ${ }^{c}$ and Kinkini Bhattacharyya ${ }^{c}$
${ }^{a}$ Physics Department, Jadavpur University, Jadavpur, Calcutta 700 032, India, ${ }^{b}$ Department of Pharmaceutical Technology, Jadavpur University, Jadavpur, Calcutta 700 032, India, and 'Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India. E-mail: msskm@iacs.ernet.in

(Received 16 January 1997; accepted 14 October 1997)

Abstract

In the title compound, methyl $2-\left\{6^{\prime}\right.$-ethyl $-2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime},-$ $7^{\prime}, 8^{\prime}$ - hexahydro-4-hydroxy -2 -oxo-spiro [1 H -indole$3(2 H), 1^{\prime}\left(8 a^{\prime} H\right)$-indolizin]- 7^{\prime} - yl $\}$ - 3 -methoxyacrylate, $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$, the indole molecule is not planar. The planarity of the atom group $\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 2=\mathrm{O} 1$ of the indole moiety and the short $\mathrm{N} 1-\mathrm{C} 2$ bond of 1.363 (11) \AA are due to delocalization of the benzoid electrons, which extend over the atoms N1, C2 and O1. The fivemembered ring of the indolizine moiety is puckered and the six-membered ring fused to it has a normal chair conformation. The methoxycarbonyl and the methoxy groups have a trans configuration about the $\mathrm{C} 16=\mathrm{C} 17$ bond in the acrylate moiety. The structure is stabilized by intramolecular hydrogen bonding of the type $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and intermolecular hydrogen bonding of the type N $\mathrm{H} \cdots \mathrm{O}$.

