Dale, J. A., Dull, D. L. & Mosher, H. S. (1969). J. Org. Chem. 34, 2543-2549.

- Dale, J. A. & Mosher, H. S. (1973). J. Am. Chem. Soc. 95, 512-519. Dunitz, J. (1979). X-ray Analysis and The Structure of Organic Molecules, p. 429. Ithaca: Cornell University Press.
- Eberle, M., Egli, M. & Seebach, D. (1988). Helv. Chim. Acta, 71, 1-23.
- Elliott, M. & Janes, N. F. (1978). Chem. Soc. Rev. 7, 473-505.
- Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Krief, A., Surleraux, D. & Ropson, N. (1993). Tetrahedron Asymmetry, 4, 289–292.
- Ollevier, T. (1997). PhD thesis, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Shoffers, E., Golebiowski, A. & Johnson, C. R. (1996). *Tetrahedron*, **52**, 3769–3826.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.

Swinnen, D. (1997). Unpublished results.

Acta Cryst. (1998). C54, 398-399

The First Structural Characterization of a Sulfoximidium Salt

JOHN J. LONGRIDGE, JEREMY M. RAWSON, NEIL FEEDER AND PAUL R. RAITHBY

Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England. E-mail: jjl22@cus.cam.ac.uk

(Received 22 August 1997; accepted 12 November 1997)

Abstract

The title compound, diphenylsulfoximidium hydrogen sulfate, $C_{12}H_{12}NOS^+.HSO_4^-$, was formed as a hydrolysis product during recrystallization of the product of the reaction of Ph₂SO with (NSCl)₃. Hydrogen-bonded networks link the cation and anion, the latter forming a hydrogen-bonded dimer.

Comment

It has been previously reported (Becke-Goehring & Latscha, 1962) that reaction of Me₂SO with (NSCl)₃ yielded the compound [Me₂SNSMe₂][Cl]. We have been interested in exploring this synthetic methodology to prepare new derivatives, including [Ph₂SNSPh₂][Cl], which has been prepared previously by alternative routes (Furukawa *et al.*, 1973). In the course of our work investigating the reactivity of Ph₂SO with (NSCl)₃, we crys-

tallized the title compound, (I), as a hydrolysis product. Hydrolysis probably occurs in the recrystallization for which the acetone solvent was not dried.

In (I), the cation is composed of a pseudo-tetrahedral S atom bonded to two phenyl groups, an amine group and an O atom (Fig. 1). The hydrogen sulfate counterion exhibits some disorder which has been modelled over three sites with site occupancies in the approximate ratio 0.74:0.17:0.09. Cations and anions are linked together through an N—H···O hydrogen-bonding network [N···O 2.824 (5) Å]. Hydrogen bonding also leads to the hydrogen sulfate anions forming dimers, with an O···O distance of 2.596 (8) Å. In addition, there is a close contact between an *ortho*-phenyl-H atom and a neighbouring O atom of a hydrogen sulfate anion [O5···C12 3.318 (5) Å].

Fig. 1. The asymmetric unit of (1) showing the atom-labelling scheme and 50% probability displacement ellipsoids. Only the major component of the hydrogen sulfate disorder is shown for clarity.

Experimental

The synthesis of (I) was carried out by reaction of Ph_2SO and $(NSCI)_3$ in a 6:1 molar ratio in CCl_4 . The solution was refluxed for 18 h and then cooled to room temperature. CCl_4 was removed *in vacuo* and the residue dissolved in acetone. Crystals suitable for X-ray diffraction formed over the course of 3–4 d.

Crystal data

 $C_{12}H_{12}NOS^+.HSO_4^ M_r = 315.35$ Mo $K\alpha$ radiation $\lambda = 0.71069$ Å

Triclinic $P\overline{1}$ a = 8.900 (2) Å b = 11.508 (2) Å c = 7.7675 (10) Å $\alpha = 94.713 (14)^{\circ}$ $\beta = 107.873 (13)^{\circ}$ $\gamma = 67.784 (14)^{\circ}$ $V = 700.4 (2) \text{ Å}^{3}$ Z = 2 $D_x = 1.495 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Rigaku AFC-7*R* diffractometer $\omega/2\theta$ scans Absorption correction: none 6290 measured reflections 3203 independent reflections 2489 reflections with $I > 2\sigma(I)$

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0466P)^2]$
+ 0.1658 <i>P</i>]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.004$
$\Delta \rho_{\rm max} = 0.267 \ {\rm e} \ {\rm A}^{-3}$
$\Delta \rho_{\rm min} = -0.292 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction: none
Scattering factors from
International Tables for
Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

S1—O1 S1—N2	1.436 (2) 1.564 (2)	S1—C11 S1—C21	1.756 (2) 1.761 (2)
OI-SI-N2	120.21 (11)	O1-S1-C21	110.17 (10)
01_\$1_C11	109.07 (9)	N2—S1—C21	102.92 (10)
N2-S1-C11	103.61 (10)	C11-S1-C21	110.44 (9)

The hydrogen sulfate anion was found to be disordered. Three sets of O atoms were refined with equivalent displacement parameters and idealized tetrahedral geometries. Aromatic H atoms were constrained with a riding model $[U_{\rm H} = 1.2U_{\rm iso}(C)]$. Both N—H and hydrogen sulfate H atoms (major component only) were located in a difference map and their coordinates refined with a fixed displacement parameter $[U_{\rm H} = 1.2U_{\rm iso}(N)]$ and $U_{\rm H} = 0.08 \times 10^3 \text{ Å}^2$, respectively].

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP (Siemens, 1994). Software used to prepare material for publication: SHELXL93.

The authors would like to thank the University of Cambridge, the EPSRC and the Newton Trust (studentship to JJL) for support.

Cell parameters from 25 reflections $\theta = 30-40^{\circ}$ $\mu = 0.398 \text{ mm}^{-1}$ T = 293 (2) KBlock $0.30 \times 0.25 \times 0.20 \text{ mm}$ Colourless

 $R_{\rm int} = 0.018$

 $\theta_{\rm max} = 27.51^{\circ}$

 $h = -10 \rightarrow 11$

 $k = -14 \rightarrow 14$

3 standard reflections

every 200 reflections

intensity decay: none

 $l = -10 \rightarrow 9$

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1214). Services for accessing these data are described at the back of the journal.

References

- Becke-Goehring, M. & Latscha, H. A. (1962). Angew. Chem. Int. Ed. Engl. 1, 551-551.
- Furukawa, N., Yoshimura, T. & Oae, S. (1973). Tetrahedron Lett. 23, 2113–2116.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XP. Interactive Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 399-401

Rotundifoline, an Oxoindole Alkaloid

Ashish Mukhopadhyyay,^a Samar Kumar Talapatra,^a Ashin Kumar Saha,^b Pranab Kumar Lala,^b Sunil Kumar Mazumdar^c and Kinkini Bhattacharyya^c

^aPhysics Department, Jadavpur University, Jadavpur, Calcutta 700 032, India, ^bDepartment of Pharmaceutical Technology, Jadavpur University, Jadavpur, Calcutta 700 032, India, and ^cDepartment of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India. E-mail: msskm@iacs.ernet.in

(Received 16 January 1997; accepted 14 October 1997)

Abstract

In the title compound, methyl $2-\{6'-\text{ethyl}-2',3',5',6',-$ 7', 8' - hexahydro - 4 - hydroxy - 2 - oxo - spiro [1H - indole -3(2H), 1'(8a'H)-indolizin]-7'-yl}-3-methoxyacrylate, $C_{22}H_{28}N_2O_5$, the indole molecule is not planar. The planarity of the atom group C13-N1-C2=O1 of the indole moiety and the short N1-C2 bond of 1.363 (11) Å are due to delocalization of the benzoid electrons, which extend over the atoms N1, C2 and O1. The fivemembered ring of the indolizine moiety is puckered and the six-membered ring fused to it has a normal chair conformation. The methoxycarbonyl and the methoxy groups have a *trans* configuration about the C16=C17 bond in the acrylate moiety. The structure is stabilized by intramolecular hydrogen bonding of the type O-H···N and intermolecular hydrogen bonding of the type N- $H \cdot \cdot \cdot O$.